Funcția de gradu 2

Cuprins referat Cum descarc?

Partea teoretica pg 4 - 8
Definitia functiei de gradul II. Exemple 	pg 4
Variatia functiei de gradul II si reprezentarea grafica pg 4
Forma canonica 	pg 4
Maximul si minimul pg 5
Sensul de variatie (intervalele de monotonie) 	pg 5
Reprezentarea grafica a functiei patratice 	pg 6
Trasarea curbei reprezentative a unei functii patratice pg 7
Semnul functiei patratice pg 8
Partea aplicativa pg 8 - 9


Extras din referat Cum descarc?

Definitie. Fiind date numerele reale, a,b,c cu a? 0, functia f : R?R definita prin formula: f(x) = ax? + bx + c se numeste functie de gradul al doilea cu coeficientii a, b, c.
1) Deoarece domeniul si codomeniul functiei de gradul al doilea este R vom indica aceasta functie astfel:
f(x) = ax? + bx + c sau y = ax? + bx + c
2) O functie de gradul al doilea f : R?R, f(x) = ax? + bx + c este perfect determinata cand se cunosc numerele reale a, b, c (a ? 0).
3) Trebuie sa observam ca in definitia functiei de gradul al doilea conditia a ? 0 este esentiala in sensul ca ipoteza a = 0 conduce la functia de gradul intai, studiata in clasa a VIII-a.
4) Denumirea de functie de gradul al doilea provine din faptul ca este definita prin intermediul trinomului de gradul al doilea aX? + bX + c.
Exemple de functii de gradul al doilea
1) f1 (x) = 7x? - 9x + 10, (a = 7, b = -9, c = 10);
2) f2 (x) = ?2x? + ?2x + 1, (a = ?2, b = ?2, c = 1);
3) f3 (x) = 0.51x? - 2x, (a = 0.51, b = -2, c = 0);
4) f4 (x) = x? + 0.31, (a = 1, b = 0, c = 0.31);
5) f5 (x) = -x? - 5x - 0.31, (a = -1, b = -5, c = -0.31).
2. VARIATIA Si REPREZENTAREA GRAFICA A FUNCTIEI DE GRADUL AL DOILEA
? Forma canonica
Reamintim ca pentru orice x ? R
ax? + bx + c = a[(x + b/2a)? - (b? - 4ac)/4a?]
Rezulta ca pentru orice x ? R, avem
f(x) = a[(x + b/2a)? - (b? - 4ac)/4a?] (1)
Membrul drept al egalitatii (1) se numeste forma canonica a functiei patratice. Numarul ? = b? - 4ac, discriminantul ecuatiei asociate (ax? + bx + c = 0), se mai numeste discriminantul functiei patratice.
Observam ca f(-b/2a) = -?/4a
Exemple
a) 2x? - x + 3 = 2[x? - 1/2x + 3/2] = 2[x? - 2*x*1/4x + 1/16 - 1/16 + 3/2] = 2[(x -1/4)? + 23/16] = 2(x - 1/4)? + 23/8;
b) -3x? - 4x + 5 = (-3)[x? + 4/3x - 5/3] = (-3)[x? + 2*2/3x + 4/9 - 4/9 - 5/3] = (-3)[(x + 2/3)? - 19/9] = (-3)(x +2/3)? + 19/3


Fisiere in arhiva (1):

  • Functia de Gradu 2.DOC

Imagini din acest referat Cum descarc?

Promoție: 1+1 gratis

După plată vei primi prin email un cod de download pentru a descărca gratis oricare alt referat de pe site (vezi detalii).


Descarcă aceast referat cu doar 5 € (1+1 gratis)

Simplu și rapid în doar 2 pași: completezi adresa de email și plătești. După descărcarea primului referat vei primi prin email un cod promo pentru a descărca orice alt referat.

1. Numele, Prenumele si adresa de email:

ex. Andrei, Oana
ex. Popescu, Ionescu

Pe adresa de email specificată vei primi link-ul de descărcare și codul promo. Asigură-te că adresa este corectă și că poate primi e-mail-uri.

2. Alege modalitatea de plată preferată:


* La pretul afișat se adaugă 19% TVA.


Hopa sus!