Sisteme de Inteligenta Artificiala - Logica Fuzzy

Extras din referat Cum descarc?

Proiect Sisteme cu Inteligenta Artificiala
Logica Fuzzy
Logica a fost definita in 1965 de catre prof. Lotfi Zadeh, de la Universitatea Berkeley. Spre deosebire de logica clasica, care lucreaza cu doua valori numerice exacte (0 pentru fals si 1 pentru adevarat), logica fuzzy foloseste -plaja continua de valori logice cuprinse in intervalul 0-1, unde 0 indica falsitatea completa, iar 1 indica adevarul complet. Astfel, daca in logica clasica un obiect poate apartine (1) sau nu (0) unei multimi date, in logica fuzzy putem defini gradul de apartenenta al obiectului la multime si care poate lua valori intre 0 si 1.
Logica fuzzy ofera instrumentele necesare pentru reprezentarea in sistemele inteligente a unor concepte imprecise cum sunt ,,mare", ,,mic", ,,scump", ,,ieftin" s.a., concepte numite variabile lingvistice sau variabile fuzzy. Pentru reprezentarea acestora se folosesc seturile fuzzy, care capteaza din punct de vedere cantitativ interpretarea calitativa a termenilor.
Bazate pe logica fuzzy, sistemele fuzzy sunt considerate un caz particular al sistemelor expert (motiv pentru care mai sunt denumite si sisteme expert fuzzy) care ofera -metoda flexibila pentru tratarea incertitudinii.
Tema de proiectare:
Sa se proiecteze un sistem inteligent pentru luarea deciziei folosind instrumente de modelare cu logica Fuzzy cu simularea acestora in medii de calcul specializate ( Toolbox-urile din Matlab ). Se va alege -problema , se va concepe modelul si se vor obtine rezultatele prin simulare.
Descrierea aplicatiei
Aplicatia prezenta calculeaza prin intermediul logicii fuzzy consumul instantaneu de combustibil la un automobil care accelereaza continuu si are -cutie de viteze in cinci trepte. 
Date de intrare:
-Treapta de viteza
-Viteza de deplasare
Date de iesire:
-Consumul instantaneu
Rezolvarea unei probleme de control cu ajutorul logicii fuzzy se poate face prin realizarea unui sistem de inferente fuzzy (FIS - Fuzzy Inference System). Structura interna a unui FIS cuprinde urmatoarele componente:
o blocul de fuzzificare
o baza de reguli fuzzy
o motorul de inferente fuzzy
o blocul de defuzzificare
In continuare sunt prezentate screenshot-urile cu aplicatia, urmarind ordinea pasilor in care a fost efectuata:
Fig 1. Structura FIS-ului
Fig 2. Functia de apartenenta pentru variabila de intrare "treapta"
Fig 3. Functia de apartenenta pentru variabila de intrare "viteza"


Fisiere in arhiva (1):

  • Sisteme de Inteligenta Artificiala - Logica Fuzzy.doc

Imagini din acest proiect Cum descarc?

Promoție: 1+1 gratis

După plată vei primi prin email un cod de download pentru a descărca gratis oricare alt referat de pe site.Vezi detalii.


Descarcă aceast referat cu doar 4 € (1+1 gratis)

Simplu și rapid în doar 2 pași: completezi adresa de email și plătești. După descărcarea primului referat vei primi prin email un alt cod pentru a descărca orice alt referat.

1. Numele, Prenumele si adresa de email:

Pe adresa de email specificata vei primi link-ul de descarcare. Daca nu gasesti email-ul, verifica si directoarele spam, junk sau toate mesajele.

2. Alege modalitatea de plata preferata:


* La pretul afisat se adauga 19% TVA, platibil in momentul achitarii abonamentului / incarcarii cartelei.

Hopa sus!